Comparison of dose conversion factors for radon progeny from the ICRP 66 regional model and an airway tube model of tracheo-bronchial tree.
نویسندگان
چکیده
Current epidemiological approaches to radon dosimetry yield a dose conversion factor (DCF) of 4 mSv WLM(-1) while the dosimetric approaches give a value closer to 13 mSv WLM(-1). The present study investigated whether the application of compartment models for the bronchial (BB) and bronchiolar (bb) regions, rather than more anatomically realistic airway tube models, has brought the dosimetric DCF to the higher values. The airway tube model of the tracheo-bronchial tree was used to calculate the effective dose per unit radon exposure. All other elements of the human respiratory tract from the reports of the ICRP or NRC were adopted. A dosimetric derivation of the radon DCF using the airway tube model yielded a value of 14.2 mSv WLM(-1). This value is slightly larger than, but not significantly different from, the result obtained through the ICRP 66 approach. It is concluded that utilization of the airway tube model instead of the regional ICRP 66 compartmental model cannot reconcile the gap between dose conversion factors derived from epidemiological and dosimetric approaches.
منابع مشابه
Absorbed fraction and dose conversion coefficients of alpha particles for radon dosimetry.
The sensitivity to different relevant parameters of the absorbed fraction of alpha particles emitted from the 222Rn chain in sensitive cells of the tracheo-bronchial tree have been investigated. The structure of the airway wall given by ICRP (ICRP66) has been adopted and employed in the present calculations. The source thickness (mucous gel and sol + cilia), target layer thickness and the depth...
متن کاملAssessment of environmental radon hazard using human respiratory tract models.
Radon is a natural radioactive gas derived from geological materials. It has been estimated that about half of the total effective dose received by human beings from all sources of ionizing radiation is attributed to 222Rn and its short-lived progeny. In this paper, the use of human respiratory tract models to assess the health hazard from environmental radon is reviewed. A short history of dos...
متن کاملMeasurement of inhalation dose due to radon and its progeny in an oil refinery and its dwellings .
Background: Radon, an invisible, odorless, heaviest (nine times heavier than air) and radioactive gas is an aberration (the only gas in the long decay chain of heavy metal elements). It is ubiquitously present in dwellings and in the environment. Humans receive the greatest radiation dose in their homes. That's where they spend most time - typically 70%, more for small children. Recent worldwid...
متن کاملDosimetric model of human lung and associated computer program
The dosimetric human respiratory tract model given in ICRP Publication 66 and ICRP Vol. 32 is briefly described in this paper. The associated home-written computer programs for calculations of radiation dose from radon and its short-lived progeny are presented, together with some representative results.
متن کاملMeasurements of indoor radon, thoron and their progeny in Farrukhabad city of Uttar Pradesh, India
Background: More than 50% of the total dose received by human beings from all sources of radiation (both from natural and manmade) comes from radon and its progeny which is responsible for lung cancer in many cases. Materials and Methods: In the present study, the measurements have been carried out by using twin chamber dosimeter cups with LR-115 type-II detectors. The value of track ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Radiation and environmental biophysics
دوره 45 2 شماره
صفحات -
تاریخ انتشار 2006